Resume of Dan Tiba



November 2015
Dan Tiba - CV


I Dan Tiba, ”Optimal control of nonsmooth distributed parameter systems”, Lecture Notes in Mathematics 1459, Springer Verlag, Berlin (1990) viii+159 pp.

II Dan Tiba, Pekka Neittaanmaki, ”Optimal control of nonlinear parabolic systems. Theory, algorithms and applications”, Marcel Dekker, New York (1994) xvi+399 pp.

III Dan Tiba, ”Lectures on the optimal control of elliptic equations”, LN 32, Univ. of Jyvaskyla Press, Jyvaskyla, Finland (1995) vi+147 pp.

IV Dan Tiba, Pekka Neittaanmaki, Juergen Sprekels, ”Optimization of elliptic systems. Theory and applications”, Springer Monographs in Mathematics, Springer, New York (2006) xv+507 pp.


V Dan Tiba, Viorel Barbu, Frederic Bonnans, ”Optimization, optimal control and partial differential equations”, Proceedings of the first Franco-Romanian conference, ISNM 107, Birkhauser Verlag, Basel (1992) xiii+349 pp.

VI Dan Tiba, Viorel Barbu, Irena Lasiecka, Constantin Varsan, ”Analysis and optimization of diferential systems”, IFIP TC7/WG7.2 international conference (Constanta 2002) Kluwer Acad.Publ. Boston, Ma (2003) x+442 pp.

VII Dan Tiba, Temistocle Birsan, ”Recreatii Stiintifice”, vol. I-VI, Iasi 1883- 1888, edited together with Introduction, Index and other supplements, “Recreatii Matematice” Publishing House, Iasi 2008.



114-I) Mihaela R. Nicolai, Dan Tiba, Implicit functions and parametrizations in dimension three: generalized solution, DCDS-A vol. 35, no. 6 (2015), pp. 2701-2710. doi:10.3934/dcds.2015.35.2701.

113-I)Dan Tiba, An example on some conditions in the calculus of variations, DCDS-A vol. 35, no. 6 (2015), U.P.B. Sci. Bull., Series A, Vol. 77, Iss. 2, (2015), pp.3-8.

113-I)Dan Tiba, UNILATERAL CONDITIONS ON THE BOUNDARY FOR SOME SECOND ORDER DIFFERENTIAL EQUATIONS, Ann. Acad. Rom. Sci. Ser. Math. Appl. Vol. 7, No. 1/2015, pp. 121-136.


113-I)111) Cornel Murea, Dan Tiba, A Penalization Method for the Elliptic Bilateral Obstacle Problem, in C. Pötzsche et al. (Eds.): CSMO 2013, IFIP AICT 443, pp. 1–10, Springer, (2014). DOI: 10.1007/978-3-662-45504-3 18.


110-I) Dan Tiba, Peter Philip, A PENALIZATION AND REGULARIZATION TECHNIQUE IN SHAPE OPTIMIZATION PROBLEMS, SIAM J. Control and Optim., vol.51, no.6, p.4295-4317 (2013).

109) Dan Tiba, THE IMPLICIT FUNCTION THEOREM AND IMPLICIT PARAMETRIZATIONS, Ann. Acad. Rom. Sci. Ser. Math. Appl. Vol. 5, No.1-2, (2013), pp. 193 – 208

108) Dan Tiba, Domains of class C: properties and applications, Annals of the University of Bucharest (mathematical series) 4 (LXII) (2013), pp. 89-102.

107) Dan Tiba, Finite element discretization in shape optimization problems for the stationary Navier-Stokes equation,in “System Modeling and Optimization”: 25th IFIP TC 7 Conference, Berlin, Germany, September 12-16, 2011, Revised Selected Papers, D.Hoemberg and F.Troltzsch Eds.,IFIP AICT 391, Springer, Heidelberg, p. 437-444 (2013).

106) Dan Tiba, Peter Philip, Shape optimization via control of a shape function on a fixed domain: theory and numerical results, in Numerical Methods for Differential Equations, Optimization and Technological Problems, S.Repin, T.Tiihonen, T.Tuovinen Eds., Comp. Meth. In Appl. Sc. 27, Springer Verlag, Dordrecht (2013), pp.305-320.

105) Dan Tiba, Optimal Control Methods and the Variational Approach to Differential Equations, Lecture Notes in Engineering and Computer Science: Proceedings of IMECS 2013, S.I. Ao, O. Castillo, D. Craig, D.D. Feng, J.-A. Lee, Eds., Newswood Limited, Hong Kong, (2013) pp.127-132, ISBN 978-988- 19251-8-3.


104-I) Dan Tiba, Pekka Neittaanmaki, Fixed domain approaches in shape optimization problems, Inverse Problems, vol.28, p.1-35, (2012) doi:10.1088/0266-5611/28/9/093001

103-I) Dan Tiba, Mikael Barboteu, Mircea Sofonea, The control variational method for beams in contact with deformable obstacles, Z. Angew. Math. Mech. 92, No. 1, 25 – 40 (2012)

102) Dan Tiba, Optimal Control Approaches for Some Geometric Optimization Problems, Lecture Notes in Engineering and Computer Science: Proceedings of WCECS 2012, 24-26 October, 2012, San Francisco, USA, S. I. Ao, Craig Douglas, W. S. Grundfest and Jon Burgstone Editors, Newswood Limited, Hong Kong, p.1248-1252, (2012) ISBN 978-988-19252-4-4


101-I) Dan Tiba, ”Finite element approximation for shape optimization problems with Neumann and mixed boundary conditions”, SIAM J. Control Optimiz., vol.49, no.3, p.1064-1077 (2011)

100-I) Dan Tiba, Approximation in shape optimization problems, in Alexandru Myller Mathematical Seminar Centennial Conference, V. Barbu, O. Carja Eds., AIP Conference Proceedings Volume: 1329 Pages: 236-245, DOI: 10.1063/1.3546088 (2011).

99) Dan Tiba, Juergen Sprekels, Extensions of the control variational method, Control and Cybernetics, vol. 40, no.4 (2011), pp. 1099-1108


98) Dan Tiba, Mircea Sofonea, ”The control variational method for elastic contact problems” , Mathematics and its Applications, vol.2, no.1 (2010), p.99- 122

97) Dan Tiba, Temistocle Birsan, A forgotten episode in the Romanian Mathematics before the second world war” (Romanian), Recreatii Matematice, vol.XII, no.2 (2010), p.128-131


96-I) Dan Tiba, Juergen Sprekels, ”The Control Variational Approach For Differential Systems”, SIAM J. Control Optim., vol. 47, no.6 (2009), p.3220- 3236

95-I) Dan Tiba, Frederic Bonnans, ”Control problems with mixed constraints and application to am optimal investement problem” , Mathematical Reports (Bucharest), vol.11(61), no.4 (2009), p.293-306

94-I) Dan Tiba, Andrei Halanay, ”Shape optimization for stationary Navier- Stokes equations”, Control and Cybernetics, vol.38, no4B (2009), p.1359-1374

93-I) Dan Tiba, Pekka Neittaanmaki, Anssi Pennanen, Fixed domain approaches in shape optimization problems with Dirichlet boundary conditions, Inverse Problems, 25 (2009), p.1-18

92-I) Dan Tiba, Juergen Sprekels, Optimization of thin elastic structures, in OPTIMAL CONTROL OF COUPLED SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS, Kunisch, K; Leugering, G; Sprekels, J; et al EDS., ISNM 158 pp. 255-273 Birkhauser Verlag, Basel, DOI: 10.1007/978-3-7643-8923-9_15 (2009)

91) Dan Tiba, Mircea Sofonea, ”The control variational method for contact of Euler-Bernoulli beams” , Bull. Transilvania Univ. Brasov , vol.2(51), Series III (2009), p.127-136


90-I)- Dan Tiba, Pekka Neittaanmaki, A fixed domain approach in shape optimization problems with Neumann boundary conditions, in PARTIAL DIFFERENTIAL EQUATIONS: MODELING AND NUMERICAL SIMULATION, R. Glowinski, P. Neittaanmaki EDS., Computational Methods in Applied Sciences 16, Springer Verlag, pp. 235-244 (2008).

89) Dan Tiba, Adrian M. Stoica, "A Kalman-type filtering problem in the presence of multiplicative white noise", in "Evolutionary and deterministic methods for design, optimization and control", P.Neittaanmaki, J.Periaux and T.Tuovinen (Eds.), CIMNE, Barcelona (2008), pag.228-233.

88) Dan Tiba, Temistocle Birsan, ”Recreatii Stiintifice - 125 years since its publication” (Romanian), Recreatii Matematice, vol X, no1, pp.1-6 (2008)

87) Dan Tiba, Temistocle Birsan, ”Recreatii Stiintifice - 125 years since its publication” (Romanian), Gazeta Matematica A, vol XXVI (CV), nr.2 (2008), pp.150-154 (reprint of 22)).


86) Dan Tiba, Masahiro Yamamoto, Gengsheng Wang, ”Applications of convexity in some identification problems”, Mathematical Reports, vol.9(59), no.1 (2007), pp.123-133.


85-I) Dan Tiba, Temistocle Birsan, One hundred years since the introduction of the set distance by Dimitrie Pompeiu, in System Modeling and Optimization, Ceragioli, F; Dontchev, A; Futura, H, V.Marti, L.Pandolfi EDS., Springer Verlag, New York, pp. 35-39.


84) Dan Tiba, Temistocle Birsan, ”A century since the publication of the Ph.D. work of Dimitrie Pompeiu” (Romanian), Recreatii Matematice, vol.vii, no.2 (2005), p.85-89

83-I) Dan Tiba, Viorel Arnautu, Juergen Sprekels, ”Optimization of curved mechanical structures” SIAM J.Control Optim. vol.44, no.2 (2005), p.743-775.

82) Dan Tiba, Rostislav Vodak, ”A general asymptotic model for Lipschitziam curved rods” Adv.Math.Sci. Appl. vol.15, no.1 (2005), p.137-198.

81-I) Dan Tiba, Viorel Arnautu, Juergen Sprekels, ”A reduction approximation method for curved rods”, Numer. Funct.Anal. Optim. vol.26, no.2 (2005), p.139-155.

80-I) Dan Tiba, Juergen Sprekels, Optimal Design of Mechanical Structures, in Control Theory of Partial Differential Equations, Imanuvilov, O; Leugering, G; Triggiani, R; et al EDS., PURE AND APPLIED MATHEMATICS 242, Chapman and Hall / CRC, Boca Raton, pp: 259-271 (2005)


79) Dan Tiba, Juergen Sprekels ”An approximation method for curved rods” in “Nonlinear partial differential equations and their applications”, Gakuto Internat.Ser.Math.Sci.Appl. 20, Gakkotosho, Tokyo (2004), p.305-314.

78-I) Dan Tiba, Constantin Zalinescu, ”On the necessity of some constraint qualification conditions in convex programming”, J.Convex Anal. vol.11, no.1 (2004), p.95-110


77-I) Dan Tiba, ) ”A property of Sobolev spaces and existence in optimal design”, Appl.Math. Optim. vol.47, no.1 (2003), p.45-58.

76-I) Dan Tiba, Juergen Sprekels, ”Optimization of clamped plates with discontinuous thickness” Systems Control Lett. vol.48, no.3-4, (2003) p.289- 295.

75) Dan Tiba, ”New results in shape optimization” Math.Rep. (Bucharest) vol.5(55), no.4, (2003) p.389-398.

74-I) Dan Tiba, Juergen, ”Optimization of differential systems with hysteresis” in “Analysis and optimization of differential systems” (Constanta 2002), Kluwer Acad.Publ.,Boston, MA (2003), p. 387-398.

73-I) Dan Tiba, Wenbin Liu, Pekka Neittaanmaki ”Existence for shape optimization problems in arbitrary dimension”, SIAM J.Control Optim. vol.41, no.5 (2003), p.1440-1454.


72) Dan Tiba, Juergen Sprekels, ”An analytic approach to a generalized Nagdhi shell model” Adv.Math.Sci. Appl. vol.12, no.1 (2002), p.175-190.

71-I) Dan Tiba, Anca Ignat, Juergen Sprekels, ”A model of a general curved rod” Math.Methods Appl.Sci. vol.25, no.10, (2002) p.835-854.

70-I) Dan Tiba, Juergen Sprekels, ”Control variational methods for differential equations” in “Optimal control of complex structures”, Hoffmann, KH; Lasiecka, I; Leugering, G; et al. EDS., ISNM 139 Birkhauser, Basel (2002), p.245-257


69-I) Dan Tiba, Anca Ignat, Juergen Sprekels, 36) ”Analysis and optimization of nonsmooth arches” SIAM J. Control Optim. vol.40, no.4 (2001), p.1107- 1133.

68) Dan Tiba, ”On the optimization of nonsmooth Kirchhoff-Love arches” Bul.Acad.St. Rep.Moldova Mat. no.3 (2001), p.23-26.

67-I) Dan Tiba, Wenbin Liu,Error estimates in the approximation of optimization problems governed by nonlinear operators” Numer. Funct. Anal.Optim. vol.22, no.7-8 (2001), p.953-972.


66-I) Dan Tiba, Juergen Sprekels, Viorel Arnautu, Hartmut Langmach, ”On the approximation and optimization of plates” Numer.Funct.Anal. Optim. vol.21, no.3-4 (2000) p.337-354

65-I) Dan Tiba, Wenbin Liu, Pekka Neittaanmaki, ”Sur les problemes d’optimization structurelle” (French) C.R.A.S. Paris Ser.I Math. vol.331, no.1 (2000), p.101-106.

64-I) Dan Tiba, Juergen Sprekels, ”Sur les arches lipschitziennes” (French) C.R.A.S. Paris Ser.I Math. vol.331, no.2 (2000), p.179-184.

63) Dan Tiba, Pekka Neittaanmaki, ”Shape optimization in free boundary systems” in “Free boundary problems:theory and applications II” (Chiba 1999), Gakuto Internat.Ser.Math.Sci.Appl. 14, Gakkotosho, Tokyo (2000), p.334-343


62-I) Dan Tiba, Juergen Sprekels, ”On the approximation and optimization of fourth order elliptic systems” ISNM 133, Birkhauser, Basel (1999), p.277-286.

61) Dan Tiba, Juergen Sprekels, ”A duality-type method for the design of beams” Adv.Math.Sci.Appl. vol.9, no.1 (1999) p.89-102.


60-I) Dan Tiba, Juergen Sprekels ”A duality approach in the optimization of beams and plates”, SIAM J. Control Optim. vol.37, no.2, (1998) p.486-501.

59-I) Dan Tiba, Juergen Sprekels,”Proprietes de bang-bang generalisees dans l’optimisation des plaques” (French), C.R.A.S.Paris Ser.I Math. vol.327, no.7 (1998) p.705-710.

58) Dan Tiba. Maitine Bergounioux, ”Optimal control for the obstacle problem with state constraints”, ESAIM Proc. SMAI no.4, Paris (1998), p.7-19.


57) Dan Tiba, K.-H. Hoffman, ”Control of a plate with nonlinear shape memory alloy reinforcements”, Adv.Math.Sci.Appl. vol.7, no.1, p.427-436 (1997).


56-I) Dan Tiba, Maitine Bergounioux, ”General optimality conditions for constrained convex control problems”, SIAM J. Control Optim. vol.34, no.2 (1996), p.698-711.

55-I) Dan Tiba, Fredi Troltzsch, ”Error estimates for the discretization of state constrained convex control problems”, Numer.Funct.Anal.Optim. vol.17, no.9- 10 (1996), p.1005-1028.

54-I) Dan Tiba, Timo Mannikko, Pekka Neittaanmaki, ”Optimal control approach to optimal shape design”, Zeit. fur Angew.Math. Mech., vol.76, no.S3 (1996), p.203-206.

53-I) Dan Tiba, Maitine Bergounioux, ”Some examples of optimality conditions for convex control problems with general constraints” in “Control of partial differential equations and applications” (Laredo 1994), Lecture Notes in Pure and Appl. Math. 174, Marcel Dekker, New York (1996), p.23-30.

52) Dan Tiba, Timo Mannikko, ”An optimal control approximation method in shape optimization problems” in “Second Portuguese conf. on automatic control” (Porto 1996), APCA (1996), p.467-477.


51) Dan Tiba, K.-H. Hoffman, ”Fixed domain methods in variable domain problems” in “Free boundary problems:theory and applications” (Toledo 1993), Pitman Res.Notes Math. 323, Longman Sci.Tech., Harlow (1995), p.123-146.

50) Dan Tiba, Pekka Neittaanmaki, Tuomo Raisanen, ”On the approximation of some ill-posed problems” in “Qualitative problems for differential equations and control theory”, World Sci.Publishing, River Edge, NJ (1995), p.251-262.

49-I) Dan Tiba, ”Sur l’approximation d’un probleme mal pose” (French), C.R.A.S. Paris Ser.I Math.vol.320, no.5 (1995), p.619-624.

48-I) Dan Tiba, Pekka Neittaanmaki, ”An embedding of domains approach in free boundary problems and optimal design”, SIAM J. Control Optim. vol.33, no.5 (1995), p.1587-1602.


47-I) Dan Tiba, Timo Mannikko, Pekka Neittaanmaki, ”A rapid method for the identification of the free boundary in two-phase Stefan problem”, IMA J. Numer. Anal. vol.14, no.3 (1994), p.411-420.

46-I) Dan Tiba, Timo Mannikko, Maitine Bergounioux, ”Optimality conditions for non-qualified parabolic control problems” in “Control and estimation of distributed parameter systems : nonlinear phenomena” (Vorau 1993), ISNM 118, Birkhauser, Basel (1994) p.45-61.

45) Dan Tiba, Leonidas Xanthis, ”The method of arbitrary lines in the control of elliptic problems - error estimates” (Athens 1994), Hellenic Math.Soc., Athens (1994), p.205-217.


44) Dan Tiba, ”Controllability properties for elliptic systems” in “International Conference on Differential Equations Vol.1,2” (Barcelona 1991),World Sci. Publishing, River Edge, NJ (1993), p.932-936.

43) Dan Tiba, Timo Mannikko, Maitine Bergounioux, ”On nonqualified parabolic control problems” in “Optimization and Control” (Jyvaskyla 1992), Report 58, Univ. of Jyvaskyla Press, Jyvaskyla (1993).


42-I) Dan Tiba, ”Controllability properties for elliptic systems, the fictitious domain method and optimal shape design problems”, ISNM 107, Birkhauser, Basel (1992), p.251-261.

41-I) Dan Tiba, Pekka Neittaanmaki, Raino Makinen, On a fixed domain approach for a shape optimization problem, in COMPUTATIONAL AND APPLIED MATHEMATICS, II: DIFFERENTIAL EQUATIONS, Ames, WF; Vanderhouwen, PJ EDS., Dublin, pp. 317-326 (1992)

40-I) Dan Tiba, Pekka Neittaanmaki, Raino Makinen, A boundary controllability approach in optimal shape design” in “Boundary control and boundary variations” (Sophia-Antipolis 1990), Lecture Notes in Control and Inform. Sci. 178, Springer, Berlin (1992), p.309-320.


39-I) Dan Tiba, Pekka Neittaanmaki, ”Optimal control for state constrained two-phase Stefan problems” in “Numerical methods for free boundary problems” (Jyvaskyla, 1990), ISNM 99, Birkhauser, Basel (1991), p.309-316.

38) Dan Tiba, Frederic, Bonnans, ”Optimality conditions in the control of semilinear elliptic variational inequalities” in “Differential equations and control theory” (Iasi 1990), Pitman Res. Notes Math. Ser 250, Longman Sci.Tech., Harlow (1991), p.38-43.

37-I) Dan Tiba, Raino Makinen, Pekka Neittaanmaki, ”Controllability-type properties for elliptic systems and applications”, ISNM 100, Birkhauser , Basel (1991), p.341-353.

36) Dan Tiba, Frederic Bonnans, ”Pontryagin’s principle in the control of elliptic variational inequalities”, Appl. Math. Optim. vol.23, no.3 (1991), p. 299-312.

35) Dan Tiba, Viorel Barbu, ”Boundary controllability of the coincidence set in the obstacle problem”, SIAM J. Control Optim. vol.29, no.5 (1991), p.1150- 1159

34-I) Dan Tiba,.On the approximation of state constrained control problems, in PROCEEDINGS OF THE 30TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3 pp. 1996-1998.


33) Dan Tiba, Viorel Barbu, Optimal control of abstract variational inequalities” in “Control of distributed parameter systems”, M. Amouroux and A. El Jai eds., Pergamon Press, Oxford (1990), p.410-414.

32) Dan Tiba, Timo Tiihonen, Pekka Neittaanmaki, Raino Makinen, ”A boundary control approach to an optimal shape design problem” in “Control of distributed parameter systems”, M. Amouroux and A. El Jai eds., Pergamon Press, Oxford (1990), p.415-418.

31) Dan Tiba,”Une approche par controlabilite frontiere dans les problemes de design optimal” (French), C.R.A.S. Paris Ser.I Math. vol.310, no.4 (1990), p.175-177.


30-I) Dan Tiba, Marinela Tiba, ”Approximation for control problems with pointwise state constraints” in “Control and estimation of distributed parameter systems” (Vorau 1988), ISNM 91 Birkhauser, Basel (1989), p. 379-390.

29) Dan Tiba, Raino Makinen, Pekka Neittaanmaki, ”A variational inequality approach to the problem of the design of the optimal covering of an obstacle” in “Control of partial differential equations” (Santiago de Compostela 1987), Lecture Notes in Control and Inform. Sci. 114, Springer, Berlin (1989), p. 213- 224.


28) Dan Tiba, Pekka Neittaanmaki, ”A variational inequality approach to constrained control problems for parabolic equations”, Appl.Math.Optim. vol.17, no.3 (1988), p.185-201.


27) Dan Tiba, Jaroslav Haslinger, Pekka Neittaanmaki, ”On state constrained optimal shape design problems” in “Optimal control of partial differentail equations ‘II (Oberwolfach 1986), ISNM 78, Birkhauser, Basel (1987), p.109- 122.

26) Dan Tiba, Frederic Bonnans, ”Equivalent control problems and applications” in “Control problems for systems described by partial differential equations and applications” (Gainesville, Florida, 1986), Lecture Notes in Control and Inform. Sci. 97, Springer, Berlin (1987), p. 154-161.

25) Dan Tiba, Vilmos Komornik, ”On the control of strongly nonlinear hyperbolic systems”, Acta Math. Hungar. vol.49, no.1-2 (1987), p.261-266.

24) Dan Tiba, ”Optimal control for second order semilinear hyperbolic equations”, Control Theory Adv, Tech. vol.3, no.1 (1987), p.33-43.

23) Dan Tiba, Pekka Neittaanmaki, A steepest descent method for the approximation of the boundary control in two-phase Stefan problem, Mathematica, vol.29 (52), no.2, pp.157-167 (1987)

22) P. Neittaanmaki and D. Tiba. On the approximation of the boundary control in two-phase Stefan-type problems. Control Cybernet., 16(3–4):33–44, 1987


21) Dan Tiba, ”Une approche par inequations variationnelles pour les problemes de controle avec contraintes” (French), C.R.A.S. Paris Ser. L Math. vol.302, no.1 (1986), p.29-31.

20) Dan Tiba, ”Optimal control of semilinear hyperbolic boundary value problems” in “Workshop on Differential Equations” (Constanta 1986), Minist. Ed. Invat., p.25-33.


19) Dan Tiba, ”Optimal control of hyperbolic variational inequalities” in “Nondifferentiable optimization : motivations and applications” (Sopron 1984), Lecture Notes in Econom. and Math. Systems 255, Springer, Berlin (1985), p.139-149.

18) Dan Tiba, ”Optimality conditions for distributed control problems with nonlinear state equation”, SIAM J. Control Optim. vol.23, no.1 (1985), p. 85- 110.

17) Dan Tiba, Eckerhard Krauss. Regularization of saddle functions and the Yosida approximation of monotone operators, An.St. Univ. “Al.I.Cuza” Iasi, Sect. Mat. vol.31, no.3 (1977), p.215-220.

16) Dan Tiba, Vilmos Komornik, Controle de systemes fortement nonlineaires, C.R. Acad. Sci. Paris 300, pp393-396 (1985)


15) Dan Tiba, Marinela Tiba, ”Regularity of the boundary data and the convergence of the finite element discretization in two-phase Stefan problems”, Internat. J. Engrg. Sci. vol.22, no.11-12 (1984), p. 1225-1234

14) Dan Tiba, ”Quelques remarques sur le controle de la corde vibrante avec obstacle” (French) C.R.A.S. Paris, Ser.I Math., vol.229, no. 13 (1984), p.615- 617.

13) Dan Tiba, ”Some remarks on the control of the vibrating string with obstacle”, Rev. Roumaine Math. Pures Appl. vol.29, no.10 (1984), p.899-906.

12) Dan Tiba, ”Optimality criteria for convex control problems. Necessary conditions in problems with nonlinear state equations” (Romanian) Stud.Cerc.Mat. vol.36, no.6 (1984), p.511-540.

11) Dan Tiba, Pekka Neittaanmaki, ”On the finite element approximation of the boundary control for two- phase Stefan problems” in “Analysis and optimization of systems.Part 1” (Nice, 1984), Lecture Notes in Control and Inform. Sci. 62, Springer, Berlin (1984), p.356-370.

10) Dan Tiba, Pekka Neittaanmaki, ”On the approximation of the boundary control of the two-phase Stefan problems”, Proceedings 23-rd IEEE/CDC (1984), p.1705-1706.

9) Dan Tiba, ”Boundary control for a Stefan problem” In “Optimal control of partial differential equations” (Oberwolfach, 1982), ISNM 82, Birkhauser, Basel (1984), p. 229-242.


8) Dan Tiba, OPTIMALITY CONDITIONS FOR NONLINEAR DISTRIBUTED CONTROL PROBLEMS. Proceedings of the 22nd IEEE Conference on Decision and Control, San Antonio, Volume 3, 1983, Pages 1251-1252


7) Dan Tiba, Zhou Meike, ”Optimal control for a Stefan problem”, in “Analysis and optimization of systems” (Versailles, 1982), Lecture Notes in Control and Information Sci.44, Springer Verlag, Berlin (1982), p.776-787.

6) D. Tiba, “Necessary conditions for some nonlinear control problems,” in: Differential Equations and Applications, Part II, Tech. Univ., Ruse (1982), pp. 729–734


5) Dan Tiba, ”Regularization of saddle functions”, Boll.Un.Mat.Ital.A(5), vol.17, no.3 (1980), p.420-427.


4) Dan Tiba, ”Obstacle problems for first order partial differential operators”, in “Variational inequalities and optimization problems” (Proc. Summer School Constanta), Minist. Ed. Inv. (1979), p.105-113.


3) Dan Tiba, ”General boundary value problems for second order differential equations”, Nonlinear Anal. vol.2, no.4 (1978), p.447-455.


2)Dan Tiba, “Subdifferentials of composed functions and applications in optimal control”, An.St. Univ. “Al.I.Cuza” Iasi, Sect. Mat. vol.23, no.2 (1977), p.381-386

1) Dan Tiba, ”Nonlinear boundary value problems for second order differential equations”, Funkcial.Ekvac., vol.20, no.3 (1977), p.213-221.